class: center, middle, inverse, title-slide .title[ # Hypothesis & Estimation ] .subtitle[ ## EDP 619 Week 11 ] .author[ ### Dr. Abhik Roy ] --- <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.6.0/jquery.min.js"></script> <script type="text/x-mathjax-config"> MathJax.Hub.Register.StartupHook("TeX Jax Ready",function () { MathJax.Hub.Insert(MathJax.InputJax.TeX.Definitions.macros,{ cancel: ["Extension","cancel"], bcancel: ["Extension","cancel"], xcancel: ["Extension","cancel"], cancelto: ["Extension","cancel"] }); }); </script> <style> section { display: flex; display: -webkit-flex; } section { height: 600px; width: 60%; margin: auto; border-radius: 21px; background-color: #212121; } .remark-slide-container { background: #212121; } .hljs-github .hljs { background: transparent; color: #b2dfdb; } .hljs-github .hljs-keyword { color: #64b5f6; } .hljs-github .hljs-literal { color: #64b5f6; } .hljs-github .hljs-number { color: #64b5f6; } .hljs-github .hljs-string { color: #b7b3ef; } .hljs-github .hljs { background: transparent; color: #b2dfdb; } .hljs-github .hljs-keyword { color: #64b5f6; } .hljs-github .hljs-literal { color: #64b5f6; } .hljs-github .hljs-number { color: #64b5f6; } .hljs-github .hljs-string { color: #b7b3ef; } section p { text-align: center; font-size: 30px; background-color: #212121; border-radius: 21px; font-family: Roboto Condensed; font-style: bold; padding: 12px; color: #bff4ee; margin: auto; } #center { text-align: center; } #right { text-align: right; } .center p { margin: 0; position: absolute; top: 50%; left: 50%; -ms-transform: translate(-50%, -50%); transform: translate(-50%, -50%); } .center2 { margin: 0; position: absolute; top: 50%; left: 50%; -ms-transform: translate(-50%, -50%); transform: translate(-50%, -50%); } .tab { display: inline-block; margin-left: 40px; } .tabdbl { display: inline-block; margin-left: 80px; } .tabtpl { display: inline-block; margin-left: 120px; } .obr { display:block; margin-top:-15px; } .pull-left-left { float: left; width: 27%; } .pull-right-right { float: right; width: 32%; } img.expand:hover { margin: 0 auto; position: relative; width: 50%; display: flex; justify-content: center; align-items: center; align-content: center; transform: scale(1.5) translateX(-35%); z-index: 99; transition:all 0.5s ease-in-out; -webkit-transition:all 0.2s ease-in-out; } .vertline { border-left: 5px solid #212121; height: 100px; margin-left: 15px; margin-right: 15px; } *, *:before, *:after { box-sizing: border-box; outline: none; } .hover { position: relative; display: flex; align-items: center; justify-content: center; width: 400px; height: 65px; background-color: #e3c0ff; border-radius: 99px; box-shadow: 0 1px 3px rgba(0, 0, 0, 0.12), 0 1px 2px rgba(0, 0, 0, 0.24); transition: all 0.3s cubic-bezier(0.25, 0.8, 0.25, 1); overflow: hidden; } .hover:before, .hover:after { position: absolute; top: 0; display: flex; align-items: center; justify-content: center; width: 50%; height: 100%; transition: 0.25s linear; z-index: 1; } .hover:before { content: ''; left: 0; background-color: #ca86ec; color: #212121; } .hover:after { content: ''; right: 0; background-color: #d896ff; } .hover:hover { background-color: #cc8bff; box-shadow: 0 14px 28px rgba(0, 0, 0, 0.25), 0 10px 10px rgba(0, 0, 0, 0.22); } .hover:hover span { opacity: 0; z-index: -3; } .hover:hover:before { opacity: 0.5; transform: translateY(-100%); } .hover:hover:after { opacity: 0.5; transform: translateY(100%); } .hover span { position: absolute; top: 0; left: 0; display: flex; align-items: center; justify-content: center; text-align: center; width: 100%; height: 100%; color: #212121; font-size: 24px; font-weight: 700; opacity: 1; transition: opacity 0.25s; z-index: 2; white-space:pre; } .hover .doc-link { position: relative; display: flex; align-items: center; justify-content: center; text-align: center; width: 25%; height: 100%; color: whitesmoke; font-size: 24px; text-decoration: none; transition: 0.25s; } .hover .doc-link i { text-shadow: 1px 1px rgba(70, 98, 127, 0.7); transform: scale(1); } .hover .doc-link:hover { background-color: rgba(245, 245, 245, 0.1); } .hover .doc-link:hover i { animation: bounce 0.4s linear; } @keyframes bounce { 40% { transform: scale(1.4); } 60% { transform: scale(0.8); } 80% { transform: scale(1.2); } 100% { transform: scale(1); } } .boxl { width: 50%; margin: 5px; text-align: center; } .boxr { margin: 5px; text-align: center; } .picr { display: flex; justify-content: space-around; align-items: center; } </style> <style type="text/css"> .highlight-last-item > ul > li, .highlight-last-item > ol > li { opacity: 0.5; } .highlight-last-item > ul > li:last-of-type, .highlight-last-item > ol > li:last-of-type { opacity: 1; } </style>
--- class: highlight-last-item layout: true --- # <span style='color:#bff4ee;'>Welcome!</span> Before moving on, please make note of the following -- + This serves as a toolkit of sorts and is meant for those who have taken a first semester course in descriptive & inferential statistics -- + We will address some of the basic testing approaches and estimation statistics that you likely covered before -- + A logical step after reviewing this content is to explore the idea and need for conducting a power analysis for any statistically driven study -- .footnote[As of this writing, some equations may not show up properly in Firefox. Other browsers such as Chrome and Safari do appear to render them correctly.] --- ## Essental Terms .center2[ **Statistic** - Mathematical expression that describes some aspects of a set of scores for a sample <br> <br> **Parameter** - Describes some aspect of a set of scores for a population ] --- # First a Brief Intro to Hypothesis Testing -- <br> <br> <br> <br> <br> .pull-left[ <p id="center" style="color:#ffb3ba; font-weight: bold; border:1px; border-style:solid; border-color:#ffb3ba; border-radius: 25px; padding: 0.3em;"> <i>Formally</i><br><br> Testing an assumption about a population parameter<br> </p> ] .pull-right[ <p id="center" style="color:#bae1ff; font-weight: bold; border:1px; border-style:solid; border-color:#bae1ff; border-radius: 25px; padding: 0.3em;"> <i>Conversationally</i><br><br> An assumption about a particular situation of the world that is testable </p> ] --- # Parts of a Hypothesis -- .pull-left[ <p id="center" style="color:#f9c7ca; font-weight: bold; border:1px; border-style:solid; border-color:#f9c7ca; border-radius: 25px; padding: 0.3em;"> <i>The Null Hypothesis</i><br> </p> <ul> <span style="color:#f9c7ca;"><li>what is expected to happen</span></li><br> <span style="color:#f9c7ca;"><li>must be a piece of information that is known</span></li> </ul> ] -- .pull-right[ <p id="center" style="color:#f9c7ca; font-weight: bold; border:1px; border-style:solid; border-color:#f9c7ca; border-radius: 25px; padding: 0.3em;"> <i>Notation</i><br> </p> <hr style="height:5px; visibility:hidden;" /> `$$H_0$$` ] -- <br> <br> .pull-left[ <p id="center" style="color:#f7d5b5; font-weight: bold; border:1px; border-style:solid; border-color:#f7d5b5; border-radius: 25px; padding: 0.3em;"> <i>Alternative Hypothesis</i><br> </p> <ul> <span style="color:#f7d5b5;"><li>what else could happen</span></li><br> <span style="color:#f7d5b5;"><li>may or may not be known</span></li> </ul> ] -- .pull-right[ <p id="center" style="color:#f7d5b5; font-weight: bold; border:1px; border-style:solid; border-color:#f7d5b5; border-radius: 25px; padding: 0.3em;"> <i>Notation</i><br> </p> <hr style="height:5px; visibility:hidden;" /> `$$H_1 \,\,\textrm{or}\,\, H_A$$` ] --- # Tests of Statistical Significance -- <br> <br> .pull-left[ <p id="center" style="color:#ffb3ba; font-weight: bold; border:1px; border-style:solid; border-color:#ffb3ba; border-radius: 25px; padding: 0.3em;"> <i>Formally</i><br><br> Determination if either <span style="color:#ffffff;">`H_0`</span> or <span style="color:#ffffff;">`H_1`</span> can be rejected<br> </p> ] -- .pull-right[ <p id="center" style="color:#bae1ff; font-weight: bold; border:1px; border-style:solid; border-color:#bae1ff; border-radius: 25px; padding: 0.3em;"> <i>Conversationally</i><br><br> A test to figure out whether you can reasonably say if your initial assumption won't happen </p> ] -- <center> <br> <p id="center" style="color:#ccfaca; font-weight: bold; border:1px; border-style:solid; border-color:#ccfaca; border-radius: 25px; padding: 0.3em; width: 525px;"> <i>Interpretation</i><br><br> If results from a study goes the way that was expected, then nothing new was discovered<sup>1</sup> </p> <br> </center> .footnote[<sup>1</sup> Notice that the term *unimportant* is not included within the <span style="color:#ccfaca;"><i>Interpretation</i></span>. Non results are important!] --- ## Essential Term .center2[ A **(statistical) estimation ** is a sample statistic is used to estimate the value of an unknown population parameter ] --- # Positive and Negative Outcomes -- <center> <br> <p id="center" style="color:#f0fffa; font-weight: bold; border:1px; border-style:solid; border-color:#f0fffa; border-radius: 25px; padding: 0.3em; width: 525px;"> <i>Assumption</i><br><br> We assume nothing out of the ordinary is going to happen - aka <span style="color:#ffffff;">`H_0`</span> is expected </p> <br> </center> -- <br> .pull-left[ <p id="center" style="color:#bcd7f8; font-weight: bold; border:1px; border-style:solid; border-color:#bcd7f8; border-radius: 25px; padding: 0.3em;"> If <span style="color:#ffffff;">`H_0`</span> happens<br><br> then we have a <b><i>negative</b></i> outcome because what you expected to happen happened </p> ] -- .pull-right[ <p id="center" style="color:#f8bcd7; font-weight: bold; border:1px; border-style:solid; border-color:#f8bcd7; border-radius: 25px; padding: 0.3em;"> If <span style="color:#ffffff;">`H_1`</span> happens<br><br> then we have a <b><i>positive</b></i> outcome because something that was expected to happen didn't happen </p> ] --- ## Example -- <center> <br> <p id="center" style="color:#f0fffa; font-weight: bold; border:1px; border-style:solid; border-color:#f0fffa; border-radius: 25px; padding: 0.3em; width: 525px;"> <i>Experiment</i><br><br> Over the span of one year, a group of participants with ADHD in a drug study receives a daily experimental pill that is intended to help them focus for a longer timeframe than their current medication </p> <br> </center> -- .pull-left[ <p id="center" style="color:#bcd7f8; font-weight: bold; border:1px; border-style:solid; border-color:#bcd7f8; border-radius: 25px; padding: 0.3em;"> If <span style="color:#ffffff;">`H_0`</span> happens<br><br> The group of people <b><i>did not</b></i> report being focused for a longer timeframe than their current medication resulting in a <b><i>negative</b></i> outcome because that was an <b><i>expected</b></i> outcome </p> ] -- .pull-right[ <p id="center" style="color:#f8bcd7; font-weight: bold; border:1px; border-style:solid; border-color:#f8bcd7; border-radius: 25px; padding: 0.3em;"> If <span style="color:#ffffff;">`H_1`</span> happens<br><br> The group of people <i>did</i> report being focused for a longer timeframe than their current medication resulting in a <b><i>positive</b></i> outcome because that was an <i>unexpected</i> outcome </p> ] --- # Think Big .center2[No matter what you have heard or may be told in the future, both <i style='color:#f4bfc5;'><b>Type I Errors</b> and <i style='color:#f4bfc5;'><b>Type II Errors</b></i> are not represented by a single figure, rather they each contain a different range of probabilities] --- # Formal Table of Statistical Error Types -- .center2[ <table class="table" style="width: auto !important; margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:left;background-color: #212121 !important;"> Decision </th> <th style="text-align:left;background-color: #212121 !important;"> Null is True </th> <th style="text-align:left;background-color: #212121 !important;"> Null is False </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;width: 10em; background-color: #212121 !important;"> Reject Null </td> <td style="text-align:left;width: 10em; background-color: #212121 !important;"> <i style="color:#f4bfc5;"><i>False Positive<br><b>Type I Error</b></i> </i> </td> <td style="text-align:left;width: 10em; background-color: #212121 !important;"> <i style="color:#bfe0f4;">Correct Outcome<br><b>True Positive</b></i> </td> </tr> <tr> <td style="text-align:left;width: 10em; background-color: #212121 !important;"> Fail to Reject Null </td> <td style="text-align:left;width: 10em; background-color: #212121 !important;"> <i style="color:#bfe0f4;"><i>Correct Outcome<br><b>True Negative</b></i> </i> </td> <td style="text-align:left;width: 10em; background-color: #212121 !important;"> <i style="color:#f4bfc5;">False Negative<br><b>Type II Error</b></i> </td> </tr> </tbody> </table> ] --- # Nutshell Table of Statistical Error Types -- <br> <br> <br> <table class="table table-condensed" style="width: auto !important; margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:left;background-color: #212121 !important;vertical-align: middle !important;"> </th> <th style="text-align:left;background-color: #212121 !important;vertical-align: middle !important;"> </th> <th style="text-align:left;background-color: #212121 !important;vertical-align: middle !important;"> </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;width: 12em; background-color: #212121 !important;vertical-align: middle !important;"> </td> <td style="text-align:left;width: 15em; background-color: #212121 !important;vertical-align: middle !important;"> </td> <td style="text-align:left;width: 15em; background-color: #212121 !important;vertical-align: middle !important;"> </td> </tr> <tr> <td style="text-align:left;width: 12em; background-color: #212121 !important;vertical-align: middle !important;"> </td> <td style="text-align:left;width: 15em; background-color: #212121 !important;vertical-align: middle !important;"> </td> <td style="text-align:left;width: 15em; background-color: #212121 !important;vertical-align: middle !important;"> </td> </tr> <tr> <td style="text-align:left;width: 12em; "> You changed your mind </td> <td style="text-align:left;width: 15em; "> <span style="color:#f4bfc5;">but it was likely the wrong decision</span><br><br> <i style="color:#f4bfc5;"><i>False Positive<br><b>Type I Error</b></i> </i> </td> <td style="text-align:left;width: 15em; "> <span style="color:#bfe0f4;">and it was likely the right decision</span><br><br> <i style="color:#bfe0f4;">Correct Outcome<br><b>True Positive</b></i> </td> </tr> <tr> <td style="text-align:left;width: 12em; "> </td> <td style="text-align:left;width: 15em; "> </td> <td style="text-align:left;width: 15em; "> </td> </tr> <tr> <td style="text-align:left;width: 12em; "> </td> <td style="text-align:left;width: 15em; "> </td> <td style="text-align:left;width: 15em; "> </td> </tr> <tr> <td style="text-align:left;width: 12em; "> </td> <td style="text-align:left;width: 15em; "> </td> <td style="text-align:left;width: 15em; "> </td> </tr> <tr> <td style="text-align:left;width: 12em; "> </td> <td style="text-align:left;width: 15em; "> </td> <td style="text-align:left;width: 15em; "> </td> </tr> <tr> <td style="text-align:left;width: 12em; "> You didn't change your mind </td> <td style="text-align:left;width: 15em; "> <span style="color:#bfe0f4;">and it was likely the right decision</span><br><br> <i style="color:#bfe0f4;"><i>Correct Outcome<br><b>True Negative</b></i> </i> </td> <td style="text-align:left;width: 15em; "> <span style="color:#f4bfc5;">but it was likely the wrong decision</span><br><br> <i style="color:#f4bfc5;">False Negative<br><b>Type II Error</b></i> </td> </tr> <tr> <td style="text-align:left;width: 12em; "> </td> <td style="text-align:left;width: 15em; "> </td> <td style="text-align:left;width: 15em; "> </td> </tr> <tr> <td style="text-align:left;width: 12em; "> </td> <td style="text-align:left;width: 15em; "> </td> <td style="text-align:left;width: 15em; "> </td> </tr> <tr> <td style="text-align:left;width: 12em; "> </td> <td style="text-align:left;width: 15em; "> </td> <td style="text-align:left;width: 15em; "> </td> </tr> <tr> <td style="text-align:left;width: 12em; "> </td> <td style="text-align:left;width: 15em; "> </td> <td style="text-align:left;width: 15em; "> </td> </tr> </tbody> </table> --- ## Example <img src="img/type1-type2-error.svg" style="display: block; margin: auto;" /> --- ## Term -- <br> <br> <br> .pull-left[ <p id="center" style="color:#f7d5b5; font-weight: bold; border:1px; border-style:solid; border-color:#f7d5b5; border-radius: 25px; padding: 0.3em;"> <i>Alpha</i><br> </p> <ul> <span style="color:#f7d5b5;"><li>rejecting <span style="color:#ffffff;">`H_0`</span> when it is true</span></li><br> <span style="color:#f7d5b5;"><li>the probability of making a <b style='color:#f4bfc5;'><i>Type I Error</i></b></span></li><br> <span style="color:#f7d5b5;"><li>the chance of making a wrong decision when what was initially expected to happen actually happened</span></li> </ul> ] -- .pull-right[ <p id="center" style="color:#f7d5b5; font-weight: bold; border:1px; border-style:solid; border-color:#f7d5b5; border-radius: 35px; padding: 0.3em;"> <i>Notation</i><br> </p> <hr style="height:35px; visibility:hidden;" /> `$$\alpha$$` ] --- ## Example <br> <center> If an airplane </center> <br> -- <br> .pull-left[ <center> looks like this <br> <br> <img src="img/metal-plane.png" width="220px"/> <br> <br> then a low risk of failure - <i>small</i> `\alpha` <i>level</i> - is probably acceptable </center> ] -- .pull-right[ <center> looks like this <br> <br> <img src="img/paper-plane.png" width="200px"/> <br> <br> then a higher risk of failure - <i>large</i> `\alpha` <i>level</i> - is probably acceptable </center> ] --- ## Term -- .pull-left[ <p id="center" style="color:#d5b5f7; font-weight: bold; border:1px; border-style:solid; border-color:#d5b5f7; border-radius: 25px; padding: 0.3em;"> <i>Beta</i><br> </p> <ul> <span style="color:#d5b5f7;"><li>the probability of not rejecting <span style="color:#ffffff;">`H_0`</span> when it is false</span></li><br> <span style="color:#d5b5f7;"><li>the chance associated with making a <b style='color:#f4bfc5;'><i>Type II Error</i></b></span></li><br> <span style="color:#d5b5f7;"><li>the possibility of making a wrong decision when something unexpected happened</span></li> </ul> ] .pull-right[ <p id="center" style="color:#d5b5f7; font-weight: bold; border:1px; border-style:solid; border-color:#d5b5f7; border-radius: 35px; padding: 0.3em;"> <i>Notation</i><br> </p> <hr style="height:35px; visibility:hidden;" /> `$$\beta$$` ] -- .pull-left[ <p id="center" style="color:#b5d7f7; font-weight: bold; border:1px; border-style:solid; border-color:#b5d7f7; border-radius: 25px; padding: 0.3em;"> <i>Statistical Power</i><br> </p> <ul> <span style="color:#b5d7f7;"><li>the probability of not rejecting <span style="color:#ffffff;">`H_0`</span> when it is false</span></li><br> <span style="color:#b5d7f7;"><li>the chance associated with <b>NOT</b> making a <b style='color:#f4bfc5;'><i>Type II Error</i></b></span></li><br> <span style="color:#b5d7f7;"><li>the possibility of making the right decision when something unexpected happened</span></li> </ul> ] .pull-right[ <p id="center" style="color:#b5d7f7; font-weight: bold; border:1px; border-style:solid; border-color:#b5d7f7; border-radius: 35px; padding: 0.3em;"> <i>Notation</i><br> </p> <hr style="height:35px; visibility:hidden;" /> `$$1 - \beta$$` ] --- # Decision Making <br> <br> <table class="table" style="width: auto !important; margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:left;border-bottom: solid; border-bottom-width:1px; border-bottom-color: #666666;"> Reality </th> <th style="text-align:center;border-bottom: solid; border-bottom-width:1px; border-bottom-color: #666666;"> Rejected `H_0` </th> <th style="text-align:center;border-bottom: solid; border-bottom-width:1px; border-bottom-color: #666666;"> Did Not Reject `H_0` </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;width: 10em; "> </td> <td style="text-align:center;width: 10em; "> </td> <td style="text-align:center;width: 10em; "> </td> </tr> <tr> <td style="text-align:left;width: 10em; "> </td> <td style="text-align:center;width: 10em; "> </td> <td style="text-align:center;width: 10em; "> </td> </tr> <tr> <td style="text-align:left;width: 10em; "> </td> <td style="text-align:center;width: 10em; "> <i style="color:#f4bfc5;"><b>Type I Error</b></i> </td> <td style="text-align:center;width: 10em; "> <i style="color:#bfe0f4;"><b>Correct Decision</b></i> </td> </tr> <tr> <td style="text-align:left;width: 10em; "> `H_0` is true </td> <td style="text-align:center;width: 10em; "> `alpha` </td> <td style="text-align:center;width: 10em; "> `1-alpha` </td> </tr> <tr> <td style="text-align:left;width: 10em; "> </td> <td style="text-align:center;width: 10em; "> <span style="color:#f4eebf;"><b><i>Level of Significance</i></b></span> </td> <td style="text-align:center;width: 10em; "> <span style="color:#f4eebf;"><b><i>Level of Confidence</i></b></span> </td> </tr> <tr> <td style="text-align:left;width: 10em; "> </td> <td style="text-align:center;width: 10em; "> </td> <td style="text-align:center;width: 10em; "> </td> </tr> <tr> <td style="text-align:left;width: 10em; "> </td> <td style="text-align:center;width: 10em; "> </td> <td style="text-align:center;width: 10em; "> </td> </tr> <tr> <td style="text-align:left;width: 10em; "> </td> <td style="text-align:center;width: 10em; "> </td> <td style="text-align:center;width: 10em; "> </td> </tr> <tr> <td style="text-align:left;width: 10em; "> </td> <td style="text-align:center;width: 10em; "> <i style="color:#bfe0f4;"><b>Correct Outcome</b></i> </td> <td style="text-align:center;width: 10em; "> <i style="color:#f4bfc5;"><b>Type II Error</b></i> </td> </tr> <tr> <td style="text-align:left;width: 10em; "> `H_0` is false </td> <td style="text-align:center;width: 10em; "> `1-beta` </td> <td style="text-align:center;width: 10em; "> `beta` </td> </tr> <tr> <td style="text-align:left;width: 10em; "> </td> <td style="text-align:center;width: 10em; "> <span style="color:#f4eebf;"><b><i>Statistical Power!</i></b></span> </td> <td style="text-align:center;width: 10em; "> <span style="color:#f4eebf;"><b><i>Rate of a Type II Error</i></b></span> </td> </tr> <tr> <td style="text-align:left;width: 10em; "> </td> <td style="text-align:center;width: 10em; "> </td> <td style="text-align:center;width: 10em; "> </td> </tr> </tbody> </table> --- # Decision Making | | --------|---------|--------- Null | `\(H_0 =\)` | Forecast says its NOT going to rain Alternative | `\(H_1 =\)` | Something else will happen | | <br style="line-height: 3px" /> -- <table class="table" style="width: auto !important; margin-left: auto; margin-right: auto;border-bottom: 0;"> <thead> <tr> <th style="text-align:left;border-bottom: solid; border-bottom-width:1px; border-bottom-color: #666666;"> Reality </th> <th style="text-align:left;border-bottom: solid; border-bottom-width:1px; border-bottom-color: #666666;"> Rejected forecast </th> <th style="text-align:left;border-bottom: solid; border-bottom-width:1px; border-bottom-color: #666666;"> Did not reject the forecast </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;width: 10em; "> Forecast was right </td> <td style="text-align:left;width: 10em; "> Took an umbrella AND you're dry but may look silly or possibly fancy </td> <td style="text-align:left;width: 10em; "> Did not take an umbrella AND you're dry </td> </tr> <tr> <td style="text-align:left;width: 10em; border-bottom: solid; border-bottom-width:1px; border-bottom-color: #666666;"> Forecast was wrong </td> <td style="text-align:left;width: 10em; border-bottom: solid; border-bottom-width:1px; border-bottom-color: #666666;"> Took an umbrella AND you're dry </td> <td style="text-align:left;width: 10em; border-bottom: solid; border-bottom-width:1px; border-bottom-color: #666666;"> Did not take an umbrella AND you're wet </td> </tr> </tbody> <tfoot><tr><td style="padding: 0; " colspan="100%"> <span style="font-style: italic;"><small>Note: </small></span> <sup></sup> <small><i>You could have also gotten wet from snow, a flood, etc. so again <b>the alternative hypothesis generally does not imply the opposite!</b></i></small> </td></tr></tfoot> </table> <br style="line-height: 3px" /> --- # Estimation .center2[ **(Statistical) Estimation** - a sample statistic is used to estimate the value of an unknown population parameter ] --- ## Selecting a Sample Mean <br> <br> <br> <table class="table" style="width: auto !important; margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:left;border-bottom: solid; border-bottom-width:1px; border-bottom-color: #666666;"> Classification </th> <th style="text-align:left;border-bottom: solid; border-bottom-width:1px; border-bottom-color: #666666;"> Hypothesis Testing </th> <th style="text-align:left;border-bottom: solid; border-bottom-width:1px; border-bottom-color: #666666;"> Point/Interval Estimation </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;width: 10em; "> Process </td> <td style="text-align:left;width: 10em; "> Determine the probability of getting that mean if the Null is true </td> <td style="text-align:left;width: 10em; "> Estimate the value of a population mean </td> </tr> <tr> <td style="text-align:left;width: 10em; "> Outcomes </td> <td style="text-align:left;width: 10em; "> Gain information about the population mean </td> <td style="text-align:left;width: 10em; "> Gain information about the population mean </td> </tr> </tbody> </table> --- # Updating Estimation for Sample Means -- .center2[ **Point estimation** - use of sample data to calculate a single *mean* value **Interval estimation** - use of sample data to calculate a possible range of *mean* values ] --- # The Characteristic of Hypothesis Testing and Estimation <table class="table" style="width: auto !important; margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:left;border-bottom: solid; border-bottom-width:1px; border-bottom-color: #666666;"> Question </th> <th style="text-align:left;border-bottom: solid; border-bottom-width:1px; border-bottom-color: #666666;"> Hypothesis Testing </th> <th style="text-align:left;border-bottom: solid; border-bottom-width:1px; border-bottom-color: #666666;"> Point/Interval Estimation </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;width: 10em; "> Do we know the population mean? </td> <td style="text-align:left;width: 10em; "> Yes its the Null hypothesis </td> <td style="text-align:left;width: 10em; "> No we're trying to estimate it </td> </tr> <tr> <td style="text-align:left;width: 10em; "> What is the process use dto determine? </td> <td style="text-align:left;width: 10em; "> The chance of obtaining a sample mean </td> <td style="text-align:left;width: 10em; "> The value of a population mean </td> </tr> <tr> <td style="text-align:left;width: 10em; "> What is learned? </td> <td style="text-align:left;width: 10em; "> Whether the population mean is likely correct </td> <td style="text-align:left;width: 10em; "> The range of values within which the population mean is probably contained </td> </tr> <tr> <td style="text-align:left;width: 10em; "> What is our decision? </td> <td style="text-align:left;width: 10em; "> To retain or reject the null hypothesis </td> <td style="text-align:left;width: 10em; "> No actual decison </td> </tr> </tbody> </table> --- # Confidence -- .center2[ **Confidence Interval** - an interval that contains an unknown parameter (e.g. `\(\mu\)`) with certain degree of confidence <br> <br> **Level of Confidence** - probability or likelihood that an interval estimate will contain an unknown population parameter ] --- # Determining the Confidence Interval 1. Calculate the <i>standard error of the mean</i> `$$\sigma_{\overline{Y}} =\dfrac{\sigma}{\sqrt{N}}$$` -- 2. Decide on a <i>level of confidence</i> <table class="table" style="width: auto !important; margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:center;border-bottom: solid; border-bottom-width:1px; border-bottom-color: #666666;"> Probability </th> <th style="text-align:center;border-bottom: solid; border-bottom-width:1px; border-bottom-color: #666666;"> `z`-score </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;"> 0.90 </td> <td style="text-align:center;"> 1.645 </td> </tr> <tr> <td style="text-align:center;"> 0.95 </td> <td style="text-align:center;"> 1.96 </td> </tr> <tr> <td style="text-align:center;"> 0.99 </td> <td style="text-align:center;"> 2.576 </td> </tr> </tbody> </table> <br> <br> <center> Again its typical to have a 95% level of confidence thereby making \[\alpha = 0.05\] </center> --- # Determining the Confidence Interval (continued) <ol start=3> <li> Calculate the <i>confidence interval</i> \[CI = \overline{Y} \pm z\cdot\sigma_{\overline{Y}}\] </ol> -- <ol start=4> <li> Interpret the results </ol> --- # Example IQ scores in the general healthy population are approximately normally distributed with `\(100 ± 15\)`. In a sample of 100 students a sample mean IQ of 103. Find the 90% confidence interval for this data. -- Firstly we have `\(N = 100\)`, `\(\mu=100\)`, `\(\sigma = 15\)`, and `\(\overline{Y} = 103\)`. -- 1. `$$\sigma_{\overline{Y}} = \dfrac{\sigma}{\sqrt{N}} =\dfrac{15}{\sqrt{100}} = 1.50$$` -- <br> <br> <ol start=2> <li> We choose a 90% level of confidence </ol> `$$z\cdot \sigma_{\overline{Y}} = 1.645\cdot 1.50 = 2.47$$` -- <br> <ol start=3> <li> <center> \[ 90\%\, CI = 103\pm2.47 = (105.47, 100.53) \] </center> </ol> -- <br> <ol start=4> <li> <center>So we are 90% confident that the overall mean IQ is between `100.53` and `105.47`</center> </ol> --- ## Thats it! If you have any questions, please reach out -- <br> <br> <br> <br> <br> <br> <br> <br> <br> <center> <br><br> <div class="fade_rule"></div> <br><br> </center> <center> <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" /></a><br /><br />This work is licensed under a <br /><a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a> </center>