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 A common concern when faced with multivariate data with missing values is whether the missing data are missing completely
 at random (MCAR); that is, whether missingness depends on the variables in the data set. One way of assessing this is to
 compare the means of recorded values of each variable between groups defined by whether other variables in the data set are
 missing or not. Although informative, this procedure yields potentially many correlated statistics for testing MCAR, resulting
 in multiple-comparison problems. This article proposes a single global test statistic for MCAR that uses all of the available
 data. The asymptotic null distribution is given, and the small-sample null distribution is derived for multivariate normal data
 with a monotone pattern of missing data. The test reduces to a standard t test when the data are bivariate with missing data
 confined to a single variable. A limited simulation study of empirical sizes for the test applied to normal and nonnormal data
 suggests that the test is conservative for small samples.
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 1. INTRODUCTION

 Many statistical analyses of data with missing values
 make the assumption that data are missing completely at
 random (MCAR), in the sense that missingness does not
 depend on the values of variables in the data set subject
 to analysis. Nevertheless, formal tests of MCAR have not
 received much attention. When missing values are con-
 fined to a single variable y, the standard procedure is to
 compare the distributions of fully observed variables for
 respondents and nonrespondents to y, either informally or
 formally, via t tests for the differences in means. In a
 regression setting, Simon and Simonoff (1986) considered
 a sensitivity analysis of deviations from the MCAR as-
 sumption (which they call missing at random) when miss-
 ing values are confined to a single independent variable.

 Dixon (1983) in the program BMDP8D extended the t-
 test approach to multivariate data with missing values on
 any of p variables. For each variable with missing values,
 the sample is split into cases with that variable observed
 and cases with that variable missing. The means of ob-
 served values of the other variables in the two groups are
 then compared by two sample t tests. Significant differ-
 ences between these means are evidence that the data are
 not MCAR. This procedure is informative, but yields up
 to (p - 1) t tests for each variable in the data set, or up
 to p(p - 1) t statistics for assessing the MCAR assump-
 tion. The difficulties of simultaneous inference are con-
 siderable, since the t statistics are correlated with a com-
 plex correlation structure depending on the pattern of
 missing data and the correlation matrix of the y variables.

 Example: Blood Chemistry Data With Values De-
 leted. As an illustration, I consider the Werner blood-
 chemistry data (Werner, Tolls, Hultin, and Mellecker 1970;
 see Dixon 1983, table 5.1) with values randomly deleted.
 The data record eight variables for n = 188 women. Six
 of the variables were selected for our purposes: age, weight,
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 birthpill (1 = user, 2 = nonuser), cholesterol, albumin,
 and calcium. About 20% of the values of each of the latter
 four variables were randomly deleted; weight was missing

 for two cases in the original data set. Of the p(p - 1) =
 (6)(5) = 30 possible pairwise t statistics for testing MCAR,
 the five that split the sample by whether age was missing

 are vacuous, since age is never missing. Also, the five that
 split the sample by whether weight was missing are dis-

 carded, since for these the nonrespondent group consists

 of only two cases. A stem-and-leaf plot of the remaining
 20 t statistics is shown in Figure 1; for the sample size
 studied they can be viewed as normal deviates. Note that

 the extreme t statistics (-2.3, 2.4, 2.7, 3.3) might be re-
 garded as evidence against MCAR, although an MCAR
 deletion mechanism was in fact employed.

 I propose a single test statistic for testing MCAR and

 show that its null distribution is asymptotically chi-squared.
 For the data in the example, the statistic takes the value

 76.5 on 60 df (P = .074), suggesting that the evidence
 against random missingness is in fact weak. Before de-
 scribing the test statistic, I discuss the MCAR assumption
 in more detail.

 2. FORMAL DEFINITIONS OF RANDOMLY
 MISSING DATA

 Let y denote an (n x p) data matrix of n observations
 on p variables and r an (n x p) missingness indicator

 matrix, such that rij = 1 if yij is missing and 0 otherwise.
 A full model for the data and the missing-data mechanism

 specifies a distribution f(y I 0) for y, indexed by unknown
 parameters 0, and a distribution f(r I y, *j) for r, given y,
 indexed by unknown parameters j. Write y = (Yobs, Ymis),
 where Yobs represents the observed values of y and Ymis
 represents the missing values. Rubin (1976) defined the

 missing data as MCAR if f(r Y Yobs, Ymis, ) = f(r I j) for
 all Yobs and Ymis; that is, missingness does not depend on
 the observed or missing values of y. Rubin also defined a

 weaker condition for the missing-data mechanism, calling
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 Figure 1. Distribution of Pairwise t Statistics for Werner Data With
 Data Deleted by an MCAR Mechanism.

 the missing data missing at random (MAR) if f(r I Yobs,
 ymis OI) = f(r I Yobs, O) for all Ymis; that is, missingness
 does not depend on the missing values Ymis of y but may
 depend on observed values in the data set. Rubin showed

 that if the missing data are MAR and 0 and * are distinct,
 then likelihood inference for 0 can be based on the like-

 lihood obtained by integrating Ymis out of the density f(Yobs,
 Ymis i 0), without including a term for the missing-data
 mechanism in the likelihood. Under these conditions, Rubin
 called the missing-data mechanism ignorable for likeli-
 hood-based inferences.

 Tests for the MAR assumption occur in the literature

 on models for selectivity bias (see Amemiya 1985; Heck-
 man 1976; Olsen 1980) but are highly sensitive to model
 misspecification (e.g., see Little 1985). The procedures in
 this article test the stronger MCAR assumption. Such tests
 are too restrictive for testing whether the missing-data
 mechanism is ignorable for likelihood inferences, since the
 latter requires MAR, not MCAR. Nevertheless, they are
 useful for other purposes.

 First, many simple missing-data methods, including re-
 striction to complete cases and pairwise methods, gener-
 ally require the MCAR assumption (Little and Rubin 1987,
 chap. 3). Second, maximum likelihood (ML) estimation
 from data with missing values based on ignorable missing-
 data models do not require the MCAR assumption, but
 are more sensitive to model misspecification when the data
 are not MCAR. In particular, ML estimation for the multi-
 variate normal model (Orchard and Woodbury 1972) pro-
 vides consistent estimates of 0 under mild assumptions
 (finite fourth moments) when the data are MCAR, but
 uses the multivariate normal assumptions when the data
 are MAR but not MCAR, and does not in general supply
 consistent estimates when the data are not MAR. Finally,
 standard errors for the parameter estimates based on the
 expected information matrix are valid only if the data are
 MCAR. Standard errors based on the observed infor-

 mation matrix are preferable when the data are not MCAR,
 since they remain valid when the data are MAR but not
 MCAR; however, for the multivariate normal model they
 require more computation, particularly for the mean pa-
 rameters. Hence a test for MCAR provides guidance as
 to when standard errors based on the expected information
 matrix are adequate. [Note that even when the data are
 MCAR arguments can be advanced for preferring stan-
 dard errors based on the observed information; see Efron

 and Hinkley (1978).I

 3. A TEST OF MCAR FOR MULTIVARIATE DATA

 3.1 Notation

 I use the following notation: yi = (1 x p) vector of
 values for case i, in the absence of missing data. ri = (1
 x p) vector of missing-data indicators for case i. J =

 number of distinct missing-data patterns ri in the data set.

 Fully observed cases, if present, count as a pattern. Si =
 set of cases with missing-data pattern j (j = 1, . . . , J).

 mj = number of cases in Si; lmj = n. pj = number of
 observed variables for cases in Sj. Dj = (p x pj) matrix
 indicating which variables are observed for pattern j. The
 matrix has one column for each variable present, consist-
 ing of p - 1 Os and one 1 corresponding to the variable

 identified. Yobs,i = (1 x pj) vector of values of observed
 variables in case i. Yobs.j =-mj- I iSj Yobs.i = (1 x pj) vector
 of means of observed variables for pattern j. FL, t = (1
 x p) population mean vector and (p x p) covariance

 matrix of yi. ,i, X = ML estimates of FL and X, assuming
 the yi are iid normal and the missing-data mechanism is
 ignorable. X = nEl(n - 1), the ML estimate of X with

 a correction for degrees of freedom. Iobs,j FDj = (1 X
 pj) vector of means of observed variables in patternj. j bs,j

 DJT)Dj = (pj X pj) covariance matrix of observed vari-
 ables in pattern j.

 3.2 A Likelihood Ratio Test Statistic, Assuming X
 Is Known

 To motivate the test statistic I first consider the (un-
 realistic) case where X is known. Let ,u denote the ML

 estimate of L,u assuming the missing data are MAR and
 known X, and let FL* s,j = FL*Dj. I propose the following
 test statistic for the MCAR assumption:

 J

 d(= E mj(yobs, - obs,j)1obsj(Yobs,j - obs,j)* (1)
 j=l

 Suppose that yi is multivariate normal distributed with
 mean FL and covariance matrix 1. If the data are MCAR,
 then conditional on ri,

 (yobs,i I ri) i N(Yobs,. Xobs,j)I i 6 Sj. 1 C<j C J.

 (2)

 If the data are not MCAR then the means of the observed

 variables can vary across the patterns, suggesting the al-
 ternative model

 (Yobs,i I ri) i N(vobs jobs,j), i & S , 1 ?j ]C J,

 (3)

 where {Vobsi, j = 1, . . . , J} are (1 x pj) vectors of mean
 parameters for observed variables that (unlike RGobs,) are
 distinct for each pattern j. Note that the variances and

 covariances are assumed the same for each pattern; the
 case where they too are allowed to vary is considered in

 Section 4.

 The statistic d2 tests Model (2) against the alternative
 model (3), as the following lemma shows.
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 Lemma. (a) do is the likelihood ratio statistic for test-
 ing Model (2) against the alternative (3). (b) Under (2),

 do has a chi-squared distribution with f = Ipj - p df. (c)
 If the data are MCAR and yi has any distribution with
 mean FL and covariance matrix l, do is asymptotically chi-
 squared with f df. That is, for large samples the assumption
 of normality in (2) can be relaxed.

 Proof. The log-likelihood under (3) (to within a con-
 stant) is

 l(v Y Yobs)

 J

 = -2 E mj(Yobs,J - Vobs,j)obs,j(Yobs,j - Vobs,j) T (4)
 j=1

 where v denotes the set of means for all of the patterns.

 Substituting ML estimates Aobs,j = Yobs,j yields l(A I Yobs) =
 0. Substituting ML estimates of the means under Model
 (2) yields l(,u* Yobs) = -d2I2. Hence the likelihood ratio

 test statistic is - 2[1(,u* Y Yobs) - I(v Yobs)] = do, proving
 (a).

 To prove (b), concatenate the pattern mean vectors

 {Yobs,j, j = 1, . . . , J} into a single 1 x Ipj vector, and
 note that under Model (2) this vector is normal with mean
 ,uX and known covariance matrix r(Y;), where X is a
 known p x lp1 matrix of Os and ls, and r is a known
 matrix, since l is assumed known. It is easily seen that

 ,* is the generalized least squares estimate of ,u and do
 is the residual sum of squares. Hence by standard least
 squares theory, under (2) the distribution of do conditional

 on the response pattern (r1, . . ., rJ) is chi-squared with
 f = lpi - p df.

 Finally, to prove (c) let the number of observations for
 each observed pattern tend to infinity, ignoring patterns
 that do not appear in the n observed cases. The pattern
 mean vectors Yobs,j tend to normality by the central limit
 theorem, so do tends to a chi-squared deviate with f df,
 by the proof of (b).

 3.3 A Test Statistic When l Is Unknown

 When l is not known, I propose replacing ,u* and Y. in
 (1) with ,u and l from the multivariate normal ML al-
 gorithm, yielding the test statistic

 J

 d = E mj(YO,obs, j o)obs,j(Yobsbs,j -obs,j)* (5)
 j=1

 Suppose that the observed data contain information on all
 pairs of variables so that all of the means, variances, and
 covariances are estimable. If the data are MCAR and the
 distribution of yi has finite fourth moments, Y. is a consis-
 tent estimate of l. Hence under these conditions, d2, like
 do, is asymptotically chi-squared distributed with fdf. This
 result follows from the multivariate analog of a theorem
 of Cramer (1946, sec. 20.6). Thus a large-sample test of
 the MCAR assumption compares d2 with a chi-squared
 distribution with f df, rejecting when d2 is large.

 The computation of ,u and l; is iterative, but the EM
 algorithm is easy to program with the aid of the SWEEP
 operator and is available in current software (see the
 BMDPAM program of Dixon 1983). The additional cal-
 culation for (5) is trivial, since lLbl is a submatrix of the

 swept covariance matrix computed by EM (see Little and
 Rubin 1987).

 3.4 The Test Statistic for Monotone Missing Data

 The small-sample null distribution of d2 is extremely
 complex for a general pattern of missing data, but sim-
 plifies for particular missing-data patterns. Consider first
 the special case of p = 2 variables Y1 and Y2, where Y1 is
 observed for all n cases and Y2 is observed for n2 < n cases,
 say i = 1, . . . , n2. There are J = 2 patterns: Pattern 1
 denotes cases with Y1 and Y2 present and pattern 2 denotes

 cases with only Y1 present. Then, Yobs,i = (Yil, Yi2) for i =
 1, ... , n2 and yobs,i = yl for i = n2 + 1, . . ., n; Yobs,1
 = (Y1, Y2), the sample means of Y1 and Y2 based on the
 first n2 cases; Yobs,2 = Y the sample mean of Y1 based on

 the last n - n2 cases; iobs,l = i; and iobs,2 = 11. Thus
 (5) becomes

 Y_111) A)

 + (n - fl2)(Y - jul)2/&ll, (6)

 which can be rewritten as

 fl2(Y1 - f1)2 + 2[Y2 - /Y2 - f21.1(Y1 -2

 +~~~~~~~~~~~~~

 + (n - n2)(Yl - j71)2 (6)

 Explicit ML estimates of the parameters are available for

 this problem (see Anderson 1957; Little and Rubin 1987,
 chap. 6). Substituting these in (7) yields, after a little al-
 gebra,

 d2 = [n2(yi - /1)2 + (n - fl2)(Yn - n2)/l_

 = SSB1/MST1 = (n - 1)FI(n - 2 + F),

 where SSB1, MST1, and F are, respectively, the between-
 groups sum of squares, the total mean square, and the F
 statistic from the analysis of variance (ANO VA) of Y1 on
 the missing-data pattern. Since there are just two patterns
 here, F = t2, where t is the t statistic for comparing pattern
 means discussed in Section 1. Hence the test based on
 is equivalent to thes thest. Under the null hypothesis of

 MCAR and assuming that the values of Y1 are normal, F
 has an F distribution with 1 and n - 2 df.

 More generally, suppose that the data can be arranged
 in a monotone pattern, where variable Yq is more observed
 than Yqdi for q = 1, . . ., p - 1 (Rubin 1974). Then, if
 aq is the number of cases for which Yn is observed, n
 nMorn2??np. A generalization of the previous analysis
 yields

 d2= SSB1/MST1 + SSB21/MST21 + *

 p-l

 = fo (fq - 1)(kq - l)Fq(i2...q l
 q=1

 * {na, - ka + (k T - 1)Fa.. -l} (8)
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 where nq is the number of cases with Yq observed; kq is

 the number of patterns with Yq observed; SSB1, MST1,
 and F1 are, respectively, the between-groups sum of squares,
 total mean square, and F statistic from the ANOVA of Y1

 on all k1 patterns; SSB2.1, MST2.1, and F2.1 are the between-
 groups sum of squares, total mean square, and F statistic
 from the analysis of covariance of Y2 on all k2 patterns
 with Y2 observed, adjusting for Y1; and the remaining terms
 are defined similarly. Under normality and MCAR, each

 of the contributions in (8) is independent, so the small-
 sample null distribution of d2 is a sum of functions of
 independent F statistics. In large samples, these functions
 become chi-squared distributed, and d2 has the asymptotic
 chi-squared distribution discussed in Section 3.3.

 3.5 Simulation Study

 A limited simulation study was conducted to examine
 the empirical size of tests based on d2, for incomplete
 multivariate normal, skewed (lognormal), and long-tailed
 (multivariate t3) data sets with n = 20, 40, or 80 obser-
 vations. To generate the multivariate normal and multi-
 variate t data sets, observations i on p = 4 variables Y1,

 Y2, Y3, and Y4 were generated from independent standard
 normal deviates ZI, Z2, Z3, and Z4, using

 Yii = Zil/ ;,

 Yi2 = Zi1N/9Iqi + Zi2 .1Iqi,

 Yi3 = Zii21q1 + Zi2 .lqi + Zi3 ,7/qi,

 and

 YA = -Zii-\I6Iq + zi2 qi

 + Zi3 .1Iqi + Zi4V.-05Iqi

 For the multivariate normal data sets qi = 1 for all i; for
 the multivariate t3 data sets qi equals a chi-squared deviate
 with 3 df. The resulting data sets all have mean vector (0,
 0, 0, 0) and variances (1, 1, 1, 1). The correlations are P12
 = .9487, P13 = .4472, P23 = .5243, P14 = - .7746, P24 =
 -.5767, and p34 = .0763, thus encompassing a range of
 values. The lognormal data sets were obtained by expo-

 nentiating the values (yij) generated for the multivariate
 normal case.

 Missing data were then created in the data set by an
 MCAR mechanism such that for every data set exactly

 40% of the cases were complete (i.e., had the pattern ri
 = 0000), 10% of the cases had Y4 missing (0001), and 10%
 of the cases had each of the patterns 0011, 0010, 0110,
 0100, and 0101. Note that all cases had at least two vari-
 ables present. For each of the nine problems generated
 by the combinations of distribution and sample size, N =
 1,000 incomplete data sets were generated using the
 GGNPM and GGUBS subroutines in the IMSL library.
 The same set of random numbers was used for each of the
 nine problems to sharpen comparisons between problems.
 For each data set the MCAR test statistic was calculated;
 for the chosen missing-data pattern it has 15 df. Accept-

 ance or rejection of the MCAR hypothesis was recorded
 for the 20%, 10%, 5%, and 1% nominal levels.

 Table 1 shows the empirical sizes of the test for each
 problem. For example, 20.2 in the table indicates that for
 this problem the null hypothesis of MCAR was rejected
 at the 20% level in 202 out of 1,000 data sets. Superscripts
 a and b indicate that the empirical size differs significantly
 from the nominal size at, respectively, the 1% and 5%
 levels of significance.

 The empirical sizes do not differ significantly from nom-
 inal levels for the data sets with 80 observations. For the
 smaller sample sizes the test appears overly conservative,
 particularly at the lower nominal levels. An encouraging
 feature of the results is the relatively small impact of non-
 normality (in the form of long tails or skewness) on the
 empirical sizes, suggesting a fair degree of robustness for
 the method. This reinforces the fact that asymptotically
 the test does not require normality.

 These results on size should be treated as suggestive
 rather than definitive, given the modest scope of the sim-
 ulation study. Power calculations are not included, since
 the power depends greatly on what departures from the
 MCAR assumption are contemplated. For example, in the
 bivariate monotone case of Section 3.4, power may be
 high if missingness of Y2 depends on the fully observed
 variable Y1. On the other hand, if missingness of Y2 de-
 pends on Y2, then the test statistic only has good power
 if Y1 and Y2 are highly correlated. For a general pattern
 of missing data, the global nature of the test leads to a
 loss of power relative to others that test specific alternative
 hypotheses, such as an alternative that specifies that miss-
 ingness is a function of a particular variable. In most cir-
 cumstances such specific alternative hypotheses are hard
 to formulate with much certainty, so this loss of power
 may be tolerated in the interests of achieving a single
 global test statistic. Since power may be low, it is prudent
 to keep in mind that accepting the null hypothesis of MCAR
 does not imply its correctness.

 4. DISCUSSION

 I conclude by discussing some limitations of the pro-
 posed test and outlining some alternative procedures.
 Close relatives of the test statistic d2 in Equation (5) are
 d2, where l is replaced by the ML estimate of X under

 the alternative model (3), and d2, the likelihood ratio test

 Table 1. Percent Empirical Sizes for a Test of the MCAR
 Assumption, From N = 1,000 Simulated Data Sets

 Nominal level of test
 Sample
 size Distribution 20% 10% 5% 1%

 80 Normal 20.2 10.9 4.9 .5
 Lognormal 18.9 8.8 3.7 .7
 ton 3 df 21.2 11.2 5.5 1.0

 40 Normal 21.2 9.5 2.5a .2b
 Lognormal 18.8 8.9 3.2b .3b
 t on 3 df 20.8 9.6 4.1 .8

 20 Normal 20.3 6.8a 2.8a I3b
 Lognormal 21.1 8.3 3,5b .5
 t on 3df 21.6 8.lb 2.0a ,3b

 Standard errors 1.27 .95 .69 .315

 a 1% level of significance.

 5% level of significance.
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 statistic obtained by subtracting twice the maximized log-
 likelihoods for Models (3) and (2). These statistics have
 the same asymptotic null distribution as d2. They both
 require ML estimates to be calculated under both (2) and
 (3), and hence involve a bit more computation.

 We have seen that the test based on d2 is valid asymp-
 totically without normal assumptions; however, it seems
 most appropriate when the variables are quantitative. If
 they are categorical, with data forming a contingency table
 with supplemental margins, more appropriate large-sam-
 ple tests of the MCAR assumption can be based on the

 chi-squared statistics in Fuchs [1982, eqs. (4.1) and (4.2)],
 with estimates of the cell probabilities based on the sat-
 urated model.

 An important limitation of d2, d2, and d2 is that they
 are derived from an alternative hypothesis (3) that allows
 missingness to affect the means but constrains the vari-
 ances and covariances to be the same for all patterns. A
 referee proposed relaxing this limitation. In particular,
 consider the alternative model

 (yobsi I ri) - N(Vobs,j, robs.j), i E Sj, 1 < j < J, (9)

 where now the covariance matrices {robs,ji}, like the means
 {VobsJ}, contain distinct parameters for each pattern j. A
 standard calculation yields the following likelihood ratio
 test statistic for (9) relative to (2):

 i

 daug - d2 + > mj[tr(SobsiJo_bl,j) - pj
 j=1

 - lnISb1jI + ln|IZ11, (10)
 where Sobs,j is the sample covariance matrix of the observa-
 tions with pattern j and aug is augmented. Under (2) daug is
 asymptotically chi-squared with ,jpj(pj + 3)/2 - p(p +
 3)/2 df; this can be a large number (for the data in the
 simulation study it is 42), raising concerns about the power

 of the test. Also, data for patterns j with mj < pj need to
 be discarded, since for those patterns Sobs,j is singular; thus
 S-1 in (10) cannot be computed. By analogy with Bart-

 lett's test for comparing dispersions, I expect the test to
 be sensitive to departures from the normality assumption,
 and even under normality the asymptotic null distribution
 seems unlikely to be reliable unless the sample size is large.

 [Received July 1986. Revised March 1988.]

 REFERENCES

 Amemiya, T. (1984), "Tobit Models: A Survey," Journal of Economet-
 rics, 24, 3-61.

 Anderson, T. W. (1957), "Maximum Likelihood Estimators for the
 Multivariate Normal Distribution When Some Observations Are Miss-
 ing," Journal of the American Statistical Association, 52, 200-203.

 Cramer, H. (1946), Mathematical Methods in Statistics, Princeton, NJ:
 Princeton University Press.

 Dixon, W. J. (ed.) (1983), BMDP Statistical Software, Berkeley: Uni-
 versity of California Press.

 Efron, B., and Hinkley, D. V. (1978), "Assessing the Accuracy of the
 Maximum Likelihood Estimator: Observed Versus Expected Infor-
 mation," Biometrika, 65, 457-487.

 Fuchs, C. (1982), "Maximum Likelihood Estimation and Model Selec-
 tion in Contingency Tables With Missing Data," Journal of the Amer-
 ican Statistical Association, 77, 270-278.

 Heckman, J. D. (1976), "The Common Structure of Statistical Models
 of Truncation, Sample Selection and Limited Dependent Variables
 and a Simple Estimator for Such Models," Annals of Economic and
 Social Measurement, 5, 475-492.

 Little, R. J. A. (1985), "A Note About Models for Selectivity Bias,"
 Econometrica, 53, 1469-1474.

 Little, R. J. A., and Rubin, D. B. (1987), StatisticalAnalysis With Missing
 Data, New York: John Wiley.

 Olsen, R. J. (1980), "A Least Squares Correction for Selectivity Bias,"
 Econometrica, 48, 1815-1820.

 Orchard, T., and Woodbury, M. A. (1972), "Missing Information Prin-
 ciple: Theory and Applications," in Proceedings of the Sixth Berkeley
 Symposium on Mathematical Statistics and Probability (Vol. 1), Berke-
 ley: University of California Press, pp. 697-715.

 Rubin, D. B. (1974), "Characterizing the Estimation of Parameters in
 Incomplete Data Problems," Journal of the American Statistical As-
 sociation, 69, 467-474.

 (1976), "Inference and Missing Data," Biometrika, 63, 581-592.
 Simon, G. A., and Simonoff, J. S. (1986), "Diagnostic Plots for Missing

 Data in Least Squares Regression," Journal of the American Statistical
 Association, 81, 501-509.

 Werner, M., Tolls, R., Hultin, J., and Mellecker, J. (1970), "Sex and
 Age Dependence of Serum Calcium, Inorganic Phosphorus, Total Pro-
 tein, and Albumin in a Large Ambulatory Population," in Fifth Tech-
 nical International Congress on Automation, Advances in Automated
 Analysis (Vol. 2), Mount Kisco, NY: Futura Publishing, pp. 59-65.

This content downloaded from 
������������132.174.253.65 on Mon, 13 Jun 2022 06:42:35 UTC������������� 

All use subject to https://about.jstor.org/terms


	Contents
	p. 1198
	p. 1199
	p. 1200
	p. 1201
	p. 1202

	Issue Table of Contents
	Journal of the American Statistical Association, Vol. 83, No. 404 (Dec., 1988) pp. 929-1243
	Volume Information [pp. ]
	Front Matter [pp. ]
	Applications and Case Studies
	Miracles and Statistics: The Casual Assumption of Independence [pp. 929-940]
	Philatelic Mixtures and Multimodal Densities [pp. 941-953]
	A Walsh-Fourier Analysis of the Effects of Moderate Maternal Alcohol Consumption on Neonatal Sleep-State Cycling [pp. 954-963]
	Estimating Proportions From Randomized Response Data Using the EM Algorithm [pp. 964-968]
	Covariate Randomized Response Models [pp. 969-974]

	Computational Statistics
	[Introduction] [pp. 975]
	Applications of Parallel Computation to Statistical Inference [pp. 976-983]
	A New Family of Multivariate Distributions With Applications to Monte Carlo Studies [pp. 984-989]
	Maximum Likelihood and Quasi-Likelihood for Nonlinear Exponential Family Regression Models [pp. 990-998]
	Importance Sampling for Estimating Exact Probabilities in Permutational Inference [pp. 999-1005]
	Methods for the Analysis of Contingency Tables With Large and Small Cell Counts [pp. 1006-1013]
	Newton-Raphson and EM Algorithms for Linear Mixed-Effects Models for Repeated-Measures Data [pp. 1014-1022]

	Theory and Methods
	Bayesian Variable Selection in Linear Regression [pp. 1023-1032]
	Bayesian Variable Selection in Linear Regression: Comment [pp. 1033-1034]
	Bayesian Variable Selection in Linear Regression: Comment [pp. 1034-1035]
	Bayesian Variable Selection in Linear Regression: Rejoinder [pp. 1035-1036]
	Computational Methods Using a Bayesian Hierarchical Generalized Linear Model [pp. 1037-1044]
	The Effect of Estimating Weights in Weighted Least Squares [pp. 1045-1054]
	The Effect of Truncation on the Identifiability of Regression Coefficients [pp. 1055-1056]
	Approximations for Regression with Covariate Measurement Error [pp. 1057-1066]
	Regression Transformation Diagnostics Using Local Influence [pp. 1067-1072]
	A Recursive Regression for High-Dimensional Models, with Application to Growth Curves and Repeated Measures [pp. 1073-1077]
	The Cost of Generalizing Logistic Regression [pp. 1078-1083]
	A Unifying Approach to Nonparametric Regression Estimation [pp. 1084-1089]
	Minimax Estimates in a Semiparametric Model [pp. 1090-1096]
	Testing for Common Trends [pp. 1097-1107]
	A Graphical Procedure for Determining Nonstationarity in Time Series [pp. 1108-1116]
	Rank-Based Tests for Randomness Against First-Order Serial Dependence [pp. 1117-1128]
	A Bayesian Approach to the Best-Choice Problem [pp. 1129-1133]
	Bayesian Confidence Intervals for Smoothing Splines [pp. 1134-1143]
	Nonparametric Tests Under Restricted Treatment-Assignment Rules [pp. 1144-1151]
	The Construction of Trend-Free Run Orders of Two-Level Factorial Designs [pp. 1152-1158]
	Combined Rank Tests for Randomly Censored Paired Data [pp. 1159-1162]
	Friedman-Type Statistics and Consistent Multiple Comparisons for Unbalanced Designs with Missing Data [pp. 1163-1170]
	Comparison of Two Treatments in Animal Carcinogenicity Experiments [pp. 1171-1177]
	Estimating the Relative Rotation of Two Tectonic Plates from Boundary Crossings [pp. 1178-1183]
	Optimal Rates of Convergence for Deconvolving a Density [pp. 1184-1186]
	Sign-Preserving Unbiased Estimators in Linear Exponential Families [pp. 1187-1189]
	Approximations to the Distribution Function of the Anderson-Darling Test Statistic [pp. 1190-1191]
	Tables and Large-Sample Distribution Theory for Censored-Data Correlation Statistics for Testing Normality [pp. 1192-1197]
	A Test of Missing Completely at Random for Multivariate Data with Missing Values [pp. 1198-1202]
	Student's t Approximations for Three Simple Robust Estimators [pp. 1203-1210]

	Book Reviews
	[List of Book Reviews] [pp. 1211]
	Review: untitled [pp. 1212]
	Review: untitled [pp. 1212-1214]
	Review: untitled [pp. 1214]
	Review: untitled [pp. 1214-1215]
	Review: untitled [pp. 1215-1216]
	Review: untitled [pp. 1216-1217]
	Review: untitled [pp. 1217]
	Review: untitled [pp. 1217-1218]
	Review: untitled [pp. 1218]
	Review: untitled [pp. 1219]
	Review: untitled [pp. 1219-1220]
	Review: untitled [pp. 1220]
	Review: untitled [pp. 1221]
	Review: untitled [pp. 1221-1222]
	Review: untitled [pp. 1222-1223]
	Review: untitled [pp. 1223]
	Review: untitled [pp. 1223-1224]
	Review: untitled [pp. 1224-1225]
	Review: untitled [pp. 1225]
	Review: untitled [pp. 1225-1226]
	Review: untitled [pp. 1226-1227]
	Review: untitled [pp. 1227-1228]
	Review: untitled [pp. 1228]
	Review: untitled [pp. 1228-1229]
	Review: untitled [pp. 1229]

	Publications Received [pp. 1229-1230]
	Letters to the Editor [pp. 1231-1232]
	Correction: Nonparametric One-Sided Tests in Multivariate Analysis with Medical Application [pp. 1232]
	Correction: Book Reviews [pp. 1232]
	Correction: Regression Analysis for Categorical Variables with Outcome Subject to Nonignorable Nonresponse [pp. 1232]
	Back Matter [pp. ]





